
polib Documentation
Release 1.0.2

David Jean Louis <izimobil@gmail.com>

February 09, 2013

CONTENTS

i

ii

polib Documentation, Release 1.0.2

This documentation covers the latest release of polib.

polib is a library to manipulate, create, modify gettext files (pot, po and mo files). You can load existing files, iterate
through it’s entries, add, modify entries, comments or metadata, etc. or create new po files from scratch.

polib supports out of the box any version of python ranging from 2.4 to latest 3.X version.

polib is pretty stable now and is used by many opensource projects.

polib is completely free and opensource, the license used is the MIT license. It was developed back in 2006 by David
Jean Louis and it is still actively maintained.

To get up and running quickly, consult the quick-start guide, which describes all the necessary steps to install and use
polib. For more detailed information about how to install and how to use polib, read through the documentation listed
below.

Contents:

CONTENTS 1

http://www.opensource.org/licenses/mit-license.php
mailto:izimobil@gmail.com
mailto:izimobil@gmail.com

polib Documentation, Release 1.0.2

2 CONTENTS

CHAPTER

ONE

QUICK START GUIDE

1.1 Installing polib

polib requires python 2.5 or superior.

There are several ways to install polib, this is explained in the installation section.

For the impatient, the easiest method is to install polib via pip, just type:

pip install polib

1.2 Some basics about gettext catalogs

A gettext catalog is made up of many entries, each entry holding the relation between an original untranslated string
and its corresponding translation.

All entries in a given catalog usually pertain to a single project, and all translations are expressed in a single target
language. One PO file entry has the following schematic structure:

translator-comments
#. extracted-comments
#: reference...
#, flag...
msgid untranslated-string
msgstr translated-string

A simple entry can look like this:

#: lib/error.c:116
msgid "Unknown system error"
msgstr "Error desconegut del sistema"

polib has two main entry points for working with gettext catalogs:

• the pofile() and mofile() functions to load existing po or mo files,

• the POFile and MOFile classes to create new po or mo files.

References * Gettext Manual * PO file format * MO file format

3

http://pip.openplans.org/
http://www.gnu.org/software/gettext/manual/
http://www.gnu.org/software/gettext/manual/html_node/gettext_9.html
http://www.gnu.org/software/gettext/manual/html_node/gettext_136.html

polib Documentation, Release 1.0.2

1.3 Loading existing catalogs

1.3.1 Loading a catalog and detecting its encoding

Here the encoding of the po file is auto-detected by polib (polib detects it by parsing the charset in the header of the
pofile):

import polib
po = polib.pofile(’path/to/catalog.po’)

1.3.2 Loading a catalog and specifying explicitly the encoding

For some reason you may want to specify the file encoding explicitely (because the charset is not specified in the po
file header for example), to do so:

import polib
po = polib.pofile(

’path/to/catalog.po’,
encoding=’iso-8859-15’

)

1.3.3 Loading an mo file

In some cases you can be forced to load an mo file (because the po file is not available for example), polib handles this
case:

import polib
mo = polib.mofile(’path/to/catalog.mo’)
print mo

As for po files, mofile also allows to specify the encoding explicitely.

1.4 Creating po catalogs from scratch

polib allows you to create catalog from scratch, this can be done with the POFile class, for exemple to create a simple
catalog you could do:

import polib

po = polib.POFile()
po.metadata = {

’Project-Id-Version’: ’1.0’,
’Report-Msgid-Bugs-To’: ’you@example.com’,
’POT-Creation-Date’: ’2007-10-18 14:00+0100’,
’PO-Revision-Date’: ’2007-10-18 14:00+0100’,
’Last-Translator’: ’you <you@example.com>’,
’Language-Team’: ’English <yourteam@example.com>’,
’MIME-Version’: ’1.0’,
’Content-Type’: ’text/plain; charset=utf-8’,
’Content-Transfer-Encoding’: ’8bit’,

}

4 Chapter 1. Quick start guide

polib Documentation, Release 1.0.2

This snippet creates an empty pofile, with its metadata, and now you can add you entries to the po file like this:

entry = polib.POEntry(
msgid=u’Welcome’,
msgstr=u’Bienvenue’,
occurrences=[(’welcome.py’, ’12’), (’anotherfile.py’, ’34’)]

)
po.append(entry)

To save your file to the disk you would just do:

po.save(’/path/to/newfile.po’)

And to compile the corresponding mo file:

po.save_as_mofile(’/path/to/newfile.mo’)

1.5 More examples

1.5.1 Iterating over entries

Iterating over all entries (by default POFiles contains all catalog entries, even obsolete and fuzzy entries):

import polib

po = polib.pofile(’path/to/catalog.po’)
for entry in po:

print entry.msgid, entry.msgstr

Iterating over all entries except obsolete entries:

import polib

po = polib.pofile(’path/to/catalog.po’)
valid_entries = [e for e in po if not e.obsolete]
for entry in valid_entries:

print entry.msgid, entry.msgstr

Iterating over translated entries only:

import polib

po = polib.pofile(’path/to/catalog.po’)
for entry in po.translated_entries():

print entry.msgid, entry.msgstr

And so on... You could also iterate over the list of POEntry objects returned by the following POFile methods:

• untranslated_entries()

• fuzzy_entries()

1.5.2 Getting the percent of translated entries

1.5. More examples 5

polib Documentation, Release 1.0.2

import polib

po = polib.pofile(’path/to/catalog.po’)
print po.percent_translated()

1.5.3 Compiling po to mo files and reversing mo files to po files

Compiling a po file:

import polib

po = polib.pofile(’path/to/catalog.po’)
to get the binary representation in a variable:
modata = po.to_binary()
or to save the po file as an mo file
po.save_as_mofile(’path/to/catalog.mo’)

Reverse a mo file to a po file:

mo = polib.mofile(’path/to/catalog.mo’)
to get the unicode representation in a variable, just do:
podata = unicode(mo)
or to save the mo file as an po file
mo.save_as_pofile(’path/to/catalog.po’)

6 Chapter 1. Quick start guide

CHAPTER

TWO

INSTALLATION GUIDE

2.1 Requirements

polib requires python 2.5 or higher.

2.2 Installing polib

There are several ways to install polib:

• Automatically, via a package manager.

• Manually, by downloading a copy of the release package and installing it yourself.

• Manually, by performing a Mercurial checkout of the latest code.

2.2.1 Automatic installation via a package manager

Several automatic package-installation tools are available for Python; the most popular are pip and easy_install . Either
can be used to install polib.

Using pip, type:

pip install polib

Using easy_install, type:

easy_install polib

It is also possible that your operating system distributor provides a packaged version of polib. Consult your operating
system’s package list for details, but be aware that third-party distributions may be providing older versions of polib,
and so you should consult the documentation which comes with your operating system’s package.

2.2.2 Manual installation from a downloaded package

If you prefer not to use an automated package installer, you can download a copy of polib and install it manually. The
latest release package can be downloaded from polib’s page on the Python Package Index.

Once you’ve downloaded the package, unpack it, this will create the directory polib-X-Y-Z, which contains the
setup.py installation script. From a command line in that directory, type:

7

http://pip.openplans.org/
http://peak.telecommunity.com/DevCenter/EasyInstall
http://pypi.python.org/pypi/polib/

polib Documentation, Release 1.0.2

python setup.py install

Note: On some systems you may need to execute this with administrative privileges (e.g., sudo python
setup.py install).

2.2.3 Manual installation from a Mercurial checkout

If you’d like to try out the latest in-development code, you can obtain it from the polib repository, which is hosted at
Bitbucket and uses Mercurial for version control.

To obtain the latest code and documentation, you’ll need to have Mercurial installed, at which point you can type:

hg clone http://bitbucket.org/izi/polib/

This will create a copy of the polib Mercurial repository on your computer; you can then add the polib.py file to
your Python import path, or use the setup.py script to install as a package.

8 Chapter 2. Installation guide

http://bitbucket.org/
http://www.selenic.com/mercurial/wiki/

CHAPTER

THREE

POLIB API

3.1 The pofile function

polib.pofile(pofile, **kwargs)
Convenience function that parses the po or pot file pofile and returns a POFile instance.

Arguments:

pofile string, full or relative path to the po/pot file or its content (data).

wrapwidth integer, the wrap width, only useful when the -w option was passed to xgettext (optional, default:
78).

encoding string, the encoding to use (e.g. “utf-8”) (default: None, the encoding will be auto-detected).

check_for_duplicates whether to check for duplicate entries when adding entries to the file (optional,
default: False).

klass class which is used to instantiate the return value (optional, default: None, the return value with be a
POFile instance).

3.2 The mofile function

polib.mofile(mofile, **kwargs)
Convenience function that parses the mo file mofile and returns a MOFile instance.

Arguments:

mofile string, full or relative path to the mo file or its content (data).

wrapwidth integer, the wrap width, only useful when the -w option was passed to xgettext to generate the po
file that was used to format the mo file (optional, default: 78).

encoding string, the encoding to use (e.g. “utf-8”) (default: None, the encoding will be auto-detected).

check_for_duplicates whether to check for duplicate entries when adding entries to the file (optional,
default: False).

klass class which is used to instantiate the return value (optional, default: None, the return value with be a
POFile instance).

9

polib Documentation, Release 1.0.2

3.3 The detect_encoding function

polib.detect_encoding(file, binary_mode=False)
Try to detect the encoding used by the file. The file argument can be a PO or MO file path or a string
containing the contents of the file. If the encoding cannot be detected, the function will return the value of
default_encoding.

Arguments:

file string, full or relative path to the po/mo file or its content.

binary_mode boolean, set this to True if file is a mo file.

3.4 The escape function

polib.escape(st)
Escapes the characters \\, \t, \n, \r and " in the given string st and returns it.

3.5 The unescape function

polib.unescape(st)
Unescapes the characters \\, \t, \n, \r and " in the given string st and returns it.

3.6 The POFile class

class polib.POFile(*args, **kwargs)
Po (or Pot) file reader/writer. This class inherits the _BaseFile class and, by extension, the python list
type.

fuzzy_entries()
Convenience method that returns the list of fuzzy entries.

merge(refpot)
Convenience method that merges the current pofile with the pot file provided. It behaves exactly as the
gettext msgmerge utility:

•comments of this file will be preserved, but extracted comments and occurrences will be discarded;

•any translations or comments in the file will be discarded, however, dot comments and file positions
will be preserved;

•the fuzzy flags are preserved.

Keyword argument:

refpot object POFile, the reference catalog.

obsolete_entries()
Convenience method that returns the list of obsolete entries.

percent_translated()
Convenience method that returns the percentage of translated messages.

10 Chapter 3. polib API

polib Documentation, Release 1.0.2

save_as_mofile(fpath)
Saves the binary representation of the file to given fpath.

Keyword argument:

fpath string, full or relative path to the mo file.

translated_entries()
Convenience method that returns the list of translated entries.

untranslated_entries()
Convenience method that returns the list of untranslated entries.

3.7 The MOFile class

class polib.MOFile(*args, **kwargs)
Mo file reader/writer. This class inherits the _BaseFile class and, by extension, the python list type.

fuzzy_entries()
Convenience method to keep the same interface with POFile instances.

obsolete_entries()
Convenience method to keep the same interface with POFile instances.

percent_translated()
Convenience method to keep the same interface with POFile instances.

save(fpath=None)
Saves the mofile to fpath.

Keyword argument:

fpath string, full or relative path to the file.

save_as_pofile(fpath)
Saves the mofile as a pofile to fpath.

Keyword argument:

fpath string, full or relative path to the file.

translated_entries()
Convenience method to keep the same interface with POFile instances.

untranslated_entries()
Convenience method to keep the same interface with POFile instances.

3.8 The POEntry class

class polib.POEntry(*args, **kwargs)
Represents a po file entry.

merge(other)
Merge the current entry with the given pot entry.

translated()
Returns True if the entry has been translated or False otherwise.

3.7. The MOFile class 11

polib Documentation, Release 1.0.2

3.9 The MOEntry class

class polib.MOEntry(*args, **kwargs)
Represents a mo file entry.

12 Chapter 3. polib API

CHAPTER

FOUR

CONTRIBUTING TO POLIB

You are very welcome to contribute to the project! The bugtracker, wiki and mercurial repository can be found at the
project’s page.

New releases are also published at the cheeseshop.

4.1 How to contribute

There are various possibilities to get involved, for example you can:

• Report bugs preferably with patches if you can;

• Enhance this documentation

• Fork the code, implement new features, test and send a pull request

4.2 Running the test suite

To run the tests, just type the following on a terminal:

$ cd /path/to/polib/
$./runtests.sh

If you want to generate coverage information:

$ pip install coverage
$./runtests.sh
$ coverage html

13

http://bitbucket.org/izi/polib/
http://cheeseshop.python.org/pypi/polib/
http://www.bitbucket.org/izi/polib/issues/new/
http://www.bitbucket.org/izi/polib/src/tip/docs/
http://www.bitbucket.org/izi/polib/

polib Documentation, Release 1.0.2

14 Chapter 4. Contributing to polib

CHAPTER

FIVE

PROJECTS USING POLIB

polib is used by many opensource projects, here are some of them:

• Mercurial

• Transifex

• Launchpad ubuntu translator tools

• Django-rosetta

• The evergreen library system

• Qooxdoo

• http://www.linux.rk.edu.pl/tra/list/

• Lictionary

If you are using polib and wish to be listed here (or not) let me know.

15

http://mercurial.selenic.com
http://www.transifex.net/
https://translations.launchpad.net/
http://code.google.com/p/django-rosetta/
http://www.open-ils.org/
http://qooxdoo.org/
http://www.linux.rk.edu.pl/tra/list/
http://www.lictionary.in/
mailto:izimobil@gmail.com

